The GLRT for statistical process control of autocorrelated processes

نویسندگان

  • DANIEL W. APLEY
  • JIANJUN SHI
چکیده

This paper presents an on-line Statistical Process Control (SPC) technique, based on a Generalized Likelihood Ratio Test (GLRT), for detecting and estimating mean shifts in autocorrelated processes that follow a normally distributed Autoregressive Integrated Moving Average (ARIMA) model. The GLRT is applied to the uncorrelated residuals of the appropriate time-series model. The performance of the GLRT is compared to two other commonly applied residual-based tests ± a Shewhart individuals chart and a CUSUM test. A wide range of ARIMA models are considered, with the conclusion that the best residual-based test to use depends on the particular ARIMA model used to describe the autocorrelation. For many models, the GLRT performance is far superior to either a CUSUM or Shewhart test, while for others the di€erence is negligible or the CUSUM test performs slightly better. Simple, intuitive guidelines are provided for determining which residual-based test to use. Additional advantages of the GLRT are that it directly provides estimates of the magnitude and time of occurrence of the mean shift, and can be used to distinguish di€erent types of faults, e.g., a sustained mean shift versus a temporary spike.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drift Change Point Estimation in the rate and dependence Parameters of Autocorrelated Poisson Count Processes Using MLE Approach: An Application to IP Counts Data

Change point estimation in the area of statistical process control has received considerable attentions in the recent decades because it helps process engineer to identify and remove assignable causes as quickly as possible. On the other hand, improving in measurement systems and data storage, lead to taking observations very close to each other in time and as a result increasing autocorrelatio...

متن کامل

Phase-II Monitoring of AR (1) Autocorrelated Polynomial Profiles

In some statistical process control applications, quality of a process or product can be characterized by a relationship between a response and one or more independent variables, which is typically referred to a profile. In this paper, polynomial profiles are considered to monitor processes in which there is a first order autoregressive relation between the error terms in each profile. A remedi...

متن کامل

Process Capability Analysis in the Presence of Autocorrelation

The classical method of process capability analysis necessarily assumes that collected data are independent; nonetheless, some processes such as biological and chemical processes are autocorrelated and violate the independency assumption. Many processes exhibit a certain degree of correlation and can be treated by autoregressive models, among which the autoregressive model of order one (AR (1))...

متن کامل

Process Capability Analysis in the Presence of Autocorrelation

The classical method of process capability analysis necessarily assumes that collected data are independent; nonetheless, some processes such as biological and chemical processes are autocorrelated and violate the independency assumption. Many processes exhibit a certain degree of correlation and can be treated by autoregressive models among which the autoregressive model of order one (AR (1)) ...

متن کامل

Monitoring and Diagnosing Multistage Processes: A Review of Cause Selecting Control Charts

A review of the literature on cause selecting charts (CSCs) in multistage processes is given, with a concentration on developments which have occurred since 1993. Model based control charts and multiple cause selecting charts (MCSCs) are reviewed. Several articles based on normally and non-normally distributed outgoing quality characteristics are analyzed and important issues such as economic d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999